Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Commun ; 15(1): 3255, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627406

RESUMO

Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-signal neuromorphic device to process the ECoG in real-time. We exploit the variability of the inhomogeneous silicon neurons to achieve efficient sparse and decorrelated temporal signal encoding. We interface the full-custom SNN device to the BCI2000 real-time framework and configure the setup to detect HFO and IED co-occurring with HFO (IED-HFO). We validate the setup on pre-recorded data and obtain HFO rates that are concordant with a previously validated offline algorithm (Spearman's ρ = 0.75, p = 1e-4), achieving the same postsurgical seizure freedom predictions for all patients. In a remote on-line analysis, intraoperative ECoG recorded in Utrecht was compressed and transferred to Zurich for SNN processing and successful IED-HFO detection in real-time. These results further demonstrate how automated remote real-time detection may enable the use of HFO in clinical practice.


Assuntos
Eletrocorticografia , Redes Neurais de Computação , Humanos , Eletrocorticografia/métodos , Eletroencefalografia/métodos
2.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260687

RESUMO

Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.

3.
Nat Neurosci ; 26(4): 537-541, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894655

RESUMO

The structure of the human connectome develops from childhood throughout adolescence to middle age, but how these structural changes affect the speed of neuronal signaling is not well described. In 74 subjects, we measured the latency of cortico-cortical evoked responses across association and U-fibers and calculated their corresponding transmission speeds. Decreases in conduction delays until at least 30 years show that the speed of neuronal communication develops well into adulthood.


Assuntos
Conectoma , Substância Branca , Pessoa de Meia-Idade , Adolescente , Humanos , Criança , Encéfalo/fisiologia , Neurônios , Transdução de Sinais
4.
Lancet Neurol ; 21(11): 982-993, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36270309

RESUMO

BACKGROUND: Intraoperative electrocorticography is used to tailor epilepsy surgery by analysing interictal spikes or spike patterns that can delineate epileptogenic tissue. High-frequency oscillations (HFOs) on intraoperative electrocorticography have been proposed as a new biomarker of epileptogenic tissue, with higher specificity than spikes. We prospectively tested the non-inferiority of HFO-guided tailoring of epilepsy surgery to spike-guided tailoring on seizure freedom at 1 year. METHODS: The HFO trial was a randomised, single-blind, adaptive non-inferiority trial at an epilepsy surgery centre (UMC Utrecht) in the Netherlands. We recruited children and adults (no age limits) who had been referred for intraoperative electrocorticography-tailored epilepsy surgery. Participants were randomly allocated (1:1) to either HFO-guided or spike-guided tailoring, using an online randomisation scheme with permuted blocks generated by an independent data manager, stratified by epilepsy type. Treatment allocation was masked to participants and clinicians who documented seizure outcome, but not to the study team or neurosurgeon. Ictiform spike patterns were always considered in surgical decision making. The primary endpoint was seizure outcome after 1 year (dichotomised as seizure freedom [defined as Engel 1A-B] vs seizure recurrence [Engel 1C-4]). We predefined a non-inferiority margin of 10% risk difference. Analysis was by intention to treat, with prespecified subgroup analyses by epilepsy type and for confounders. This completed trial is registered with the Dutch Trial Register, Toetsingonline ABR.NL44527.041.13, and ClinicalTrials.gov, NCT02207673. FINDINGS: Between Oct 10, 2014, and Jan 31, 2020, 78 individuals were enrolled to the study and randomly assigned (39 to HFO-guided tailoring and 39 to spike-guided tailoring). There was no loss to follow-up. Seizure freedom at 1 year occurred in 26 (67%) of 39 participants in the HFO-guided group and 35 (90%) of 39 in the spike-guided group (risk difference -23·5%, 90% CI -39·1 to -7·9; for the 48 patients with temporal lobe epilepsy, the risk difference was -25·5%, -45·1 to -6·0, and for the 30 patients with extratemporal lobe epilepsy it was -20·3%, -46·0 to 5·4). Pathology associated with poor prognosis was identified as a confounding factor, with an adjusted risk difference of -7·9% (90% CI -20·7 to 4·9; adjusted risk difference -12·5%, -31·0 to 5·9, for temporal lobe epilepsy and 5·8%, -7·7 to 19·5, for extratemporal lobe epilepsy). We recorded eight serious adverse events (five in the HFO-guided group and three in the spike-guided group) requiring hospitalisation. No patients died. INTERPRETATION: HFO-guided tailoring of epilepsy surgery was not non-inferior to spike-guided tailoring on intraoperative electrocorticography. After adjustment for confounders, HFOs show non-inferiority in extratemporal lobe epilepsy. This trial challenges the clinical value of HFOs as an epilepsy biomarker, especially in temporal lobe epilepsy. Further research is needed to establish whether HFO-guided intraoperative electrocorticography holds promise in extratemporal lobe epilepsy. FUNDING: UMCU Alexandre Suerman, EpilepsieNL, RMI Talent Fellowship, European Research Council, and MING Fund.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Adulto , Criança , Humanos , Eletrocorticografia , Método Simples-Cego , Países Baixos , Epilepsia/cirurgia , Convulsões/cirurgia , Epilepsias Parciais/cirurgia
5.
Clin Neurophysiol ; 143: 172-181, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115810

RESUMO

OBJECTIVE: To compare scalp-EEG recorded physiological ripples co-occurring with vertex waves to pathological ripples co-occurring with interictal epileptiform discharges (IEDs). METHODS: We marked ripples in sleep EEGs of children. We compared the start of ripples to vertex wave- or IED-start, and duration, frequency, and root mean square (RMS) amplitude of physiological and pathological ripples using multilevel modeling. Ripples were classified as physiological or pathological using linear discriminant analysis. RESULTS: We included 40 children with and without epilepsy. Ripples started (χ2(1) = 38.59, p < 0.001) later if they co-occurred with vertex waves (108.2 ms after vertex wave-start) than if they co-occurred with IEDs (4.3 ms after IED-start). Physiological ripples had longer durations (75.7 ms vs 53.0 ms), lower frequencies (98.3 Hz vs 130.6 Hz), and lower RMS amplitudes (0.9 µV vs 1.8 µV, all p < 0.001) than pathological ripples. Ripples could be classified as physiological or pathological with 98 % accuracy. Ripples recorded in children with idiopathic or symptomatic epilepsy seemed to form two subgroups of pathological ripples. CONCLUSIONS: Ripples co-occurring with vertex waves or IEDs have different characteristics and can be differentiated as physiological or pathological with high accuracy. SIGNIFICANCE: This is the first study that compares physiological and pathological ripples recorded with scalp EEG.


Assuntos
Epilepsia , Couro Cabeludo , Criança , Eletroencefalografia , Epilepsia/diagnóstico , Humanos
6.
Clin Neurophysiol ; 133: 126-134, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844043

RESUMO

OBJECTIVE: We retrospectively assessed the localizing value of patient-history-based semiology (PHS), video-based semiology (VS), long-term monitoring video electroencephalography (LTM-VEEG) and interictal high resolution electric source imaging (HR-ESI) in the presurgical workup of patients with tuberous sclerosis complex (TSC). METHODS: Data from 24 consecutive TSC surgical candidates who underwent both HR-ESI and LTM-VEEG was retrospectively collected. PHS and VS were analyzed to hypothesize the symptomatogenic zone localization. LTM-VEEG and HR-ESI localization results were extracted from the diagnostic reports. Localizing value was compared between modalities, taken the resected/disconnected area of surgical patients in consideration. HR-ESI's impact on the epileptogenic zone hypothesis and surgical workup was evaluated. RESULTS: Semiology, interictal EEG, ictal EEG and HR-ESI were localizing in 25%, 54%, 63% and 79% of patients. Inter-modality concordance ranged between 33-89%. In good surgical outcome patients, PHS, VS, interictal EEG, ictal EEG and HR-ESI showed concordance with resected area in 1/9 (11%), 0/9 (0%), 4/9 (44%), 3/9 (33%) and 6/9 patients (67%). HR-ESI positively impacts clinical management in 50% of patients. CONCLUSIONS: In presurgical evaluation of TSC patients, semiology often has limited localizing value. Presurgical work-up benefits from HR-ESI. SIGNIFICANCE: Our findings may advice future presurgical epilepsy workup of TSC patients with the ultimate aim to improve outcome.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Cuidados Pré-Operatórios/métodos , Esclerose Tuberosa/fisiopatologia , Adolescente , Adulto , Encéfalo/cirurgia , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/cirurgia , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos , Esclerose Tuberosa/cirurgia , Adulto Jovem
7.
Eur J Neurosci ; 51(4): 1122-1136, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31454445

RESUMO

Delineation of epileptogenic cortex in focal epilepsy patients may profit from single-pulse electrical stimulation during intracranial EEG recordings. Single-pulse electrical stimulation evokes early and delayed responses. Early responses represent connectivity. Delayed responses are a biomarker for epileptogenic cortex, but up till now, the precise mechanism generating delayed responses remains elusive. We used a data-driven modelling approach to study early and delayed responses. We hypothesized that delayed responses represent indirect responses triggered by early response activity and investigated this for 11 patients. Using two coupled neural masses, we modelled early and delayed responses by combining simulations and bifurcation analysis. An important feature of the model is the inclusion of feedforward inhibitory connections. The waveform of early responses can be explained by feedforward inhibition. Delayed responses can be viewed as second-order responses in the early response network which appear when input to a neural mass falls below a threshold forcing it temporarily to a spiking state. The combination of the threshold with noisy background input explains the typical stochastic appearance of delayed responses. The intrinsic excitability of a neural mass and the strength of its input influence the probability at which delayed responses to occur. Our work gives a theoretical basis for the use of delayed responses as a biomarker for the epileptogenic zone, confirming earlier clinical observations. The combination of early responses revealing effective connectivity, and delayed responses showing intrinsic excitability, makes single-pulse electrical stimulation an interesting tool to obtain data for computational models of epilepsy surgery.


Assuntos
Epilepsia , Córtex Cerebral , Estimulação Elétrica , Eletrocorticografia , Eletroencefalografia , Frequência Cardíaca , Humanos
8.
Clin Neurophysiol ; 131(1): 183-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805492

RESUMO

OBJECTIVE: To develop a method for identifying intracranial EEG (iEEG) channels with epileptic activity without the need to detect spikes, ripples, or fast ripples. METHODS: We compared the skew of the distribution of power values from five minutes non-rapid eye movement stage N3 sleep for the 5-80 Hz, 80-250 Hz (ripple), and 250-500 Hz (fast ripple) bands of epileptic (located in seizure-onset or irritative zone) and non-epileptic iEEG channels recorded in patients with drug-resistant focal epilepsy. We optimized settings in 120 bipolar channels from 10 patients, compared the results to 120 channels from another 10 patients, and applied the method to channels of 12 individual patients. RESULTS: The distribution of power values was more skewed in epileptic than in non-epileptic channels in all three frequency bands. The differences in skew were correlated with the presence of spikes, ripples, and fast ripples. When classifying epileptic and non-epileptic channels, the mean accuracy over 12 patients was 0.82 (sensitivity: 0.76, specificity: 0.91). CONCLUSIONS: The 'skew method' can distinguish epileptic from non-epileptic channels with good accuracy and, in particular, high specificity. SIGNIFICANCE: This is an easy-to-apply method that circumvents the need to visually mark or automatically detect interictal epileptic events.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos , Epilepsias Parciais/fisiopatologia , Adulto , Movimentos Oculares/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Fatores de Tempo , Adulto Jovem
10.
Clin Neurophysiol ; 130(5): 845-855, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30824202

RESUMO

OBJECTIVE: Interictal high resolution (HR-) electric source imaging (ESI) and magnetic source imaging (MSI) are non-invasive tools to aid epileptogenic zone localization in epilepsy surgery candidates. We carried out a systematic review on the diagnostic accuracy and quality of evidence of these modalities. METHODS: Embase, Pubmed and the Cochrane database were searched on 13 February 2017. Diagnostic accuracy studies taking post-surgical seizure outcome as reference standard were selected. Quality appraisal was based on the QUADAS-2 framework. RESULTS: Eleven studies were included: eight MSI (n = 267), three HR-ESI (n = 127) studies. None was free from bias. This mostly involved: selection of operated patients only, interference of source imaging with surgical decision, and exclusion of indeterminate results. Summary sensitivity and specificity estimates were 82% (95% CI: 75-88%) and 53% (95% CI: 37-68%) for overall source imaging, with no statistical difference between MSI and HR-ESI. Specificity is higher when partially concordant results were included as non-concordant (p < 0.05). Inclusion of indeterminate test results as non-concordant lowered sensitivity (p < 0.05). CONCLUSIONS: Source imaging has a relatively high sensitivity but low specificity for identification of the epileptogenic zone. SIGNIFICANCE: We need higher quality studies allowing unbiased test evaluation to determine the added value and diagnostic accuracy of source imaging in the presurgical workup of refractory focal epilepsy.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia , Epilepsia/cirurgia , Imageamento por Ressonância Magnética , Magnetoencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Humanos , Sensibilidade e Especificidade
11.
Clin Neurophysiol ; 130(7): 1175-1183, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30871799

RESUMO

OBJECTIVE: We studied ripples (80-250 Hz) simultaneously recorded in electroencephalography (EEG) and magnetoencephalography (MEG) to evaluate the differences. METHODS: Simultaneous EEG and MEG were recorded in 30 patients with drug resistant focal epilepsy. Ripples were automatically detected and visually checked in virtual channels throughout the cortex. The number and location of ripples in EEG and MEG were compared to each other and to a region of interest (ROI) defined by clinically available information. RESULTS: Eleven patients showed ripples in both MEG and EEG, 11 only in EEG and one only in MEG. Twenty-four percent of the ripples occurred simultaneously in EEG and MEG, 71% only in EEG, and 5% only in MEG. Three patients without spikes in EEG showed EEG ripples. Ripple localization was concordant with the ROI in 80% of patients with MEG ripples, as opposed to 62% full or partial concordance for EEG ripples. With the optimal threshold for localizing the ROI, sensitivity and specificity were more than 80%. CONCLUSIONS: Ripples in MEG are less frequent but more specific and sensitive for the region of interest than ripples in EEG. Ripples in EEG can exist without spikes in the EEG. SIGNIFICANCE: Ripples in MEG and EEG provide complementary information.


Assuntos
Córtex Cerebral/fisiopatologia , Eletroencefalografia/métodos , Epilepsias Parciais/fisiopatologia , Magnetoencefalografia/métodos , Adolescente , Adulto , Mapeamento Encefálico/métodos , Criança , Resistência a Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
12.
Brain Topogr ; 32(3): 405-417, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30523480

RESUMO

The growing interest in brain networks to study the brain's function in cognition and diseases has produced an increase in methods to extract these networks. Typically, each method yields a different network. Therefore, one may ask what the resulting networks represent. To address this issue we consider electrocorticography (ECoG) data where we compare three methods. We derive networks from on-going ECoG data using two traditional methods: cross-correlation (CC) and Granger causality (GC). Next, connectivity is probed actively using single pulse electrical stimulation (SPES). We compare the overlap in connectivity between these three methods as well as their ability to reveal well-known anatomical connections in the language circuit. We find that strong connections in the CC network form more or less a subset of the SPES network. GC and SPES are related more weakly, although GC connections coincide more frequently with SPES connections compared to non-existing SPES connections. Connectivity between the two major hubs in the language circuit, Broca's and Wernicke's area, is only found in SPES networks. Our results are of interest for the use of patient-specific networks obtained from ECoG. In epilepsy research, such networks form the basis for methods that predict the effect of epilepsy surgery. For this application SPES networks are interesting as they disclose more physiological connections compared to CC and GC networks.


Assuntos
Encéfalo/fisiopatologia , Eletrocorticografia/métodos , Epilepsias Parciais/fisiopatologia , Mapeamento Encefálico/métodos , Estimulação Elétrica/métodos , Epilepsias Parciais/cirurgia , Humanos , Idioma , Vias Neurais/fisiopatologia
14.
Sleep ; 41(11)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137512

RESUMO

Study Objectives: A dialogue between hippocampal ripples (80-250 Hz) and neocortical sleep-specific transients is important for memory consolidation. Physiological neocortical ripples can be recognized in scalp EEGs of children. We investigated how often scalp-EEG recorded ripples co-occur with different types of sleep-specific transients, the distribution and spatial extent of ripples with and without co-occurring sleep-specific transients, and the occurrence of ripples across sleep stages. Methods: We marked ripples in daytime sleep-EEGs of 19 children and determined for each ripple if it co-occurred with a sleep-specific transient. We compared the distribution of ripples without co-occurring sleep-specific transients to the distribution of all ripples. We estimated the spatial extent of simultaneously occurring ripples by counting how many EEG regions they comprised. We compared ripple rate per sleep stage using Friedman's analysis of variance and Wilcoxon signed-rank test. Results: 74.4 % of ripples co-occurred with sleep-specific transients: 27.8 % with vertex waves, 14.7 % with hypnagogic hypersynchrony, 13.7 % with slow waves, 12.2 % with spindles, and 6.0 % with K-complexes. Ripples without co-occurring sleep-specific transients showed the same central dominance but a significantly less pronounced midline dominance than the overall distribution pattern. Spatial extent was larger when ripples co-occurred with sleep-specific transients. Ripple rates during nonrapid eye movement (N) sleep stages N1 and N2 were higher than during N3 (T = 22.00, p = 0.02 and T = 23.00, p = 0.01). Conclusions: Scalp-EEG recorded physiological ripples co-occur with various sleep-specific EEG-transients, especially with vertex waves. These ripples occur most frequently during light sleep.


Assuntos
Eletroencefalografia/tendências , Couro Cabeludo/fisiologia , Fases do Sono/fisiologia , Criança , Pré-Escolar , Movimentos Oculares/fisiologia , Feminino , Humanos , Lactente , Masculino , Consolidação da Memória/fisiologia , Sono/fisiologia
15.
Hum Brain Mapp ; 39(11): 4611-4622, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30030947

RESUMO

We investigated effective networks constructed from single pulse electrical stimulation (SPES) in epilepsy patients who underwent intracranial electrocorticography. Using graph analysis, we compared network characteristics of tissue within and outside the epileptogenic area. In 21 patients with subdural electrode grids (1 cm interelectrode distance), we constructed a binary, directional network derived from SPES early responses (<100 ms). We calculated in-degree, out-degree, betweenness centrality, the percentage of bidirectional, receiving and activating connections, and the percentage of connections toward the (non-)epileptogenic tissue for each node in the network. We analyzed whether these network measures were significantly different in seizure onset zone (SOZ)-electrodes compared to non-SOZ electrodes, in resected area (RA)-electrodes compared to non-RA electrodes, and in seizure free compared to not seizure-free patients. Electrodes in the SOZ/RA showed significantly higher values for in-degree and out-degree, both at group level, and at patient level, and more so in seizure-free patients. These differences were not observed for betweenness centrality. There were also more bidirectional and fewer receiving connections in the SOZ/RA in seizure-free patients. It appears that the SOZ/RA is densely connected with itself, with only little input arriving from non-SOZ/non-RA electrodes. These results suggest that meso-scale effective network measures are different in epileptogenic compared to normal brain tissue. Local connections within the SOZ/RA are increased and the SOZ/RA is relatively isolated from the surrounding cortex. This offers the prospect of enhanced prediction of epilepsy-prone brain areas using SPES.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Estimulação Elétrica , Eletrocorticografia , Epilepsia/fisiopatologia , Adolescente , Adulto , Encéfalo/cirurgia , Criança , Pré-Escolar , Estimulação Elétrica/métodos , Eletrocorticografia/métodos , Epilepsia/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Vias Neurais/fisiopatologia , Vias Neurais/cirurgia , Adulto Jovem
16.
Epilepsy Res ; 141: 95-101, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29547789

RESUMO

The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies. Closed-loop stimulation with an implanted device has been investigated in a larger number of patients in the RNS System clinical trials. With 230 patients enrolled at the start of the Long-term Treatment Trial, 115 remained at the last reported follow-up. Open-loop stimulation reduced seizure frequency in patients on average with over 90% compared to baseline. Closed-loop stimulation reduces seizure frequency with 60%-65%. Even though open-loop neocortical electrical stimulation has only been reported in 20 patients, and closed-loop in much a larger sample, evidence suggests that both approaches are effective in reducing seizures. It remains an open question which should be clinically preferred. Therefore, a head-to-head adaptive clinical study comparing both approaches is proposed.


Assuntos
Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Adolescente , Adulto , Criança , Eletrodos Implantados , Eletroencefalografia , Epilepsia/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , PubMed , Qualidade de Vida , Adulto Jovem
17.
Clin Neurophysiol ; 129(1): 101-111, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29172114

RESUMO

OBJECTIVE: Surface EEG can show epileptiform ripples in people with focal epilepsy, but identification is impeded by the low signal-to-noise ratio of the electrode recordings. We used beamformer-based virtual electrodes to improve ripple identification. METHODS: We analyzed ten minutes of interictal EEG of nine patients with refractory focal epilepsy. EEGs with more than 60 channels and 20 spikes were included. We computed ∼79 virtual electrodes using a scalar beamformer and marked ripples (80-250 Hz) co-occurring with spikes in physical and virtual electrodes. Ripple numbers in physical and virtual electrodes were compared, and sensitivity and specificity of ripples for the region of interest (ROI; based on clinical information) were determined. RESULTS: Five patients had ripples in the physical electrodes and eight in the virtual electrodes, with more ripples in virtual than in physical electrodes (101 vs. 57, p = .007). Ripples in virtual electrodes predicted the ROI better than physical electrodes (AUC 0.65 vs. 0.56, p = .03). CONCLUSIONS: Beamforming increased ripple visibility in surface EEG. Virtual ripples predicted the ROI better than physical ripples, although sensitivity was still poor. SIGNIFICANCE: Beamforming can facilitate ripple identification in EEG. Ripple localization needs to be improved to enable its use for presurgical evaluation in people with epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos , Epilepsias Parciais/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Eletrodos , Eletroencefalografia/instrumentação , Eletroencefalografia/normas , Feminino , Humanos , Masculino , Sensibilidade e Especificidade
19.
Epilepsia ; 58(10): e147-e151, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744852

RESUMO

The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient.


Assuntos
Epilepsia/cirurgia , Redes Neurais de Computação , Vias Neurais/cirurgia , Eletroencefalografia , Epilepsia/fisiopatologia , Humanos
20.
Ann Neurol ; 81(5): 664-676, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28380659

RESUMO

OBJECTIVE: Intraoperative electrocorticography (ECoG) can be used to delineate the resection area in epilepsy surgery. High-frequency oscillations (HFOs; 80-500 Hz) seem better biomarkers for epileptogenic tissue than spikes. We studied how HFOs and spikes in combined pre- and postresection ECoG predict surgical outcome in different tailoring approaches. METHODS: We, retrospectively, marked HFOs, divided into fast ripples (FRs; 250-500 Hz) and ripples (80-250 Hz), and spikes in pre- and postresection ECoG sampled at 2,048 Hz in people with refractory focal epilepsy. We defined four groups of electroencephalography (EEG) event occurrence: pre+post- (+/-), pre+post+ (+/+), pre-post+ (-/+) and pre-post- (-/-). We subcategorized three tailoring approaches: hippocampectomy with tailoring for neocortical involvement; lesionectomy of temporal lesions with tailoring for mesiotemporal involvement; and lesionectomy with tailoring for surrounding neocortical involvement. We compared the percentage of resected pre-EEG events, time to recurrence, and the different tailoring approaches to outcome (seizure-free vs recurrence). RESULTS: We included 54 patients (median age, 15.5 years; 25 months of follow-up; 30 seizure free). The percentage of resected FRs, ripples, or spikes in pre-ECoG did not predict outcome. The occurrence of FRs in post-ECoG, given FRs in pre-ECoG (+/-, +/+), predicted outcome (hazard ratio, 3.13; confidence interval = 1.22-6.25; p = 0.01). Seven of 8 patients without spikes in pre-ECoG were seizure free. The highest predictive value for seizure recurrence was presence of FRs in post-ECoG for all tailoring approaches. INTERPRETATION: FRs that persist before and after resection predict poor postsurgical outcome. These findings hold for different tailoring approaches. FRs can thus be used for tailoring epilepsy surgery with repeated intraoperative ECoG measurements. Ann Neurol 2017;81:664-676.


Assuntos
Ondas Encefálicas/fisiologia , Eletrocorticografia/métodos , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Monitorização Neurofisiológica Intraoperatória/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Adolescente , Adulto , Criança , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...